вторник, 13 февраля 2024 г.

Polymer chemistry

 The simple substance ethylene is a gas composed of molecules with the formula CH2CH2. Under certain conditions, many ethylene molecules will join together to form a long chain called polyethylene, with the formula (CH2CH2)n, where n is a variable but large number. Polyethylene is a tough, durable solid material quite different from ethylene. It is an example of a polymer, which is a large molecule made up of many smaller molecules (monomers), usually joined together in a linear fashion. Many naturally occurring substances, including cellulose, starch, cotton, wool, rubber, leather, proteins, and DNA, are polymers. Polyethylene, nylon, and acrylics are examples of synthetic polymers. The study of such materials lies within the domain of polymer chemistry, a specialty that has flourished in the 20th century. The investigation of natural polymers overlaps considerably with biochemistry, but the synthesis of new polymers, the investigation of polymerization processes, and the characterization of the structure and properties of polymeric materials all pose unique problems for polymer chemists.

Polymer chemists have designed and synthesized polymers that vary in hardness, flexibility, softening temperature, solubility in water, and biodegradability. They have produced polymeric materials that are as strong as steel yet lighter and more resistant to corrosion. Oil, natural gas, and water pipelines are now routinely constructed of plastic pipe. In recent years, automakers have increased their use of plastic components to build lighter vehicles that consume less fuel. Other industries such as those involved in the manufacture of textiles, rubber, paper, and packaging materials are built upon polymer chemistry.

Besides producing new kinds of polymeric materials, researchers are concerned with developing special catalysts that are required by the large-scale industrial synthesis of commercial polymers. Without such catalysts, the polymerization process would be very slow in certain cases.

среда, 7 февраля 2024 г.

Biochemistry

 As understanding of inanimate chemistry grew during the 19th century, attempts to interpret the physiological processes of living organisms in terms of molecular structure and reactivity gave rise to the discipline of biochemistry. Biochemists employ the techniques and theories of chemistry to probe the molecular basis of life. An organism is investigated on the premise that its physiological processes are the consequence of many thousands of chemical reactions occurring in a highly integrated manner. Biochemists have established, among other things, the principles that underlie energy transfer in cells, the chemical structure of cell membranes, the coding and transmission of hereditary information, muscular and nerve function, and biosynthetic pathways. In fact, related biomolecules have been found to fulfill similar roles in organisms as different as bacteria and human beings. The study of biomolecules, however, presents many difficulties. Such molecules are often very large and exhibit great structural complexity; moreover, the chemical reactions they undergo are usually exceedingly fast. The separation of the two strands of DNA, for instance, occurs in one-millionth of a second. Such rapid rates of reaction are possible only through the intermediary action of biomolecules called enzymes. Enzymes are proteins that owe their remarkable rate-accelerating abilities to their three-dimensional chemical structure. Not surprisingly, biochemical discoveries have had a great impact on the understanding and treatment of disease. Many ailments due to inborn errors of metabolism have been traced to specific genetic defects. Other diseases result from disruptions in normal biochemical pathways.

Frequently, symptoms can be alleviated by drugs, and the discovery, mode of action, and degradation of therapeutic agents is another of the major areas of study in biochemistry. Bacterial infections can be treated with sulfonamides, penicillins, and tetracyclines, and research into viral infections has revealed the effectiveness of acyclovir against the herpes virus. There is much current interest in the details of carcinogenesis and cancer chemotherapy. It is known, for example, that cancer can result when cancer-causing molecules, or carcinogens as they are called, react with nucleic acids and proteins and interfere with their normal modes of action. Researchers have developed tests that can identify molecules likelyto be carcinogenic. The hope, of course, is that progress in the prevention and treatment of cancer will accelerate once the biochemical basis of the disease is more fully understood.

The molecular basis of biologic processes is an essential feature of the fast-growing disciplines of molecular biology and biotechnology. Chemistry has developed methods for rapidly and accurately determining the structure of proteins and DNA. In addition, efficient laboratory methods for the synthesis of genes are being devised. Ultimately, the correction of genetic diseases by replacement of defective genes with normal ones may become possible.