Many chemical disciplines, such as those already discussed, focus on certain classes of materials that share common structural and chemical features. Other specialties may be centred not on a class of substances but rather on their interactions and transformations. The oldest of these fields is physical chemistry, which seeks to measure, correlate, and explain the quantitative aspects of chemical processes. The Anglo-Irish chemist Robert Boyle, for example, discovered in the 17th century that at room temperature the volume of a fixed quantity of gas decreases proportionally as the pressure on it increases. Thus, for a gas at constant temperature, the product of its volume V and pressure P equals a constant number—i.e., PV = constant. Such a simple arithmetic relationship is valid for nearly all gases at room temperature and at pressures equal to or less than one atmosphere. Subsequent work has shown that the relationship loses its validity at higher pressures, but more complicated expressions that more accurately match experimental results can be derived. The discovery and investigation of such chemical regularities, often called laws of nature, lie within the realm of physical chemistry. For much of the 18th century the source of mathematical regularity in chemical systems was assumed to be the continuum of forces and fields that surround the atoms making up chemical elements and compounds. Developments in the 20th century, however, have shown that chemical behaviour is best interpreted by a quantum mechanical model of atomic and molecular structure. The branch of physical chemistry that is largely devoted to this subject is theoretical chemistry. Theoretical chemists make extensive use of computers to help them solve complicated mathematical equations. Other branches of physical chemistry include chemical thermodynamics, which deals with the relationship between heat and other forms of chemical energy, and chemical kinetics, which seeks to measure and understand the rates of chemical reactions. Electrochemistry investigates the interrelationship of electric current and chemical change. The passage of an electric current through a chemical solution causes changes in the constituent substances that are often reversible—i.e., under different conditions the altered substances themselves will yield an electric current. Common batteries contain chemical substances that, when placed in contact with each other by closing an electrical circuit, will deliver current at a constant voltage until the substances are consumed. At present there is much interest in devices that can use the energy in sunlight to drive chemical reactions whose products are capable of storing the energy. The discovery of such devices would make possible the widespread utilization of solar energy.
There are many other disciplines within physical chemistry that are
concerned more with the general properties of substances and the interactions
among substances than with the substances themselves. Photochemistry is a specialty that investigates the
interaction of light with matter. Chemical reactions initiated
by the absorption of light can be very different from those that occur by other
means. Vitamin D, for example, is formed in the human body when the steroid ergosterol absorbs solar
radiation; ergosterol does not change to vitamin D in the dark.
Комментариев нет:
Отправить комментарий