вторник, 2 апреля 2024 г.

What Is Electrochemistry?

 Electrochemistry is the subdiscipline of Chemistry that deals with the study of the relationship between electrical energy and chemical changes. Chemical reactions that involve the input or generation of electric currents are called electrochemical reactions. Such reactions are broadly classified into two categories:

Download Complete Chapter Notes of Electrochemistry

  1. Production of chemical change by electrical energy, i.e., the phenomenon of electrolysis
  2. Conversion of chemical energy into electrical energy, i.e., the generation of electricity by spontaneous redox reactions.

Electricity can be produced when electrons move from one element to another in certain types of reactions (such as redox reactions). Typically, electrochemistry deals with the overall reactions when multiple redox reactions occur simultaneously, connected via some external electric current and a suitable electrolyte. In other words, electrochemistry is also concerned with chemical phenomena that involve charge separation (as seen commonly in liquids such as solutions). The dissociation of charge often involves charge transfer that occurs homogeneously or heterogeneously between different chemical species.

Electrochemical Cell

A spontaneous chemical process is one which can take place on its own, and in such a process, the Gibbs free energy of a system decreases. In electrochemistry, spontaneous reaction (redox reaction) results in the conversion of chemical energy into electrical energy. The reverse process is also possible where a non-spontaneous chemical reaction occurs by supplying electricity. These interconversions are carried out in equipment called an electrochemical cell.

Types of Electrochemical Cell

Electrochemical cells are of two types: galvanic cells and electrolytic cells

Galvanic Cell

The galvanic cell converts chemical energy into electrical energy, i.e., electricity can be obtained with the help of a redox reaction. The oxidation and reduction take place in two separate compartments. Each compartment consists of an electrolyte solution and a metallic conductor, which acts as an electrode. The compartment containing the electrode and the solution of the electrolyte is called half cells.

четверг, 21 марта 2024 г.

Chemistry Is Everywhere

 Everything you hear, see, smell, taste, and touch involves chemistry and chemicals (matter). And hearing, seeing, tasting, and touching all involve intricate series of chemical reactions and interactions in your body. With such an enormous range of topics, it is essential to know about chemistry at some level to understand the world around us.

In more formal terms chemistry is the study of matter and the changes it can undergo. Chemists sometimes refer to matter as ‘stuff’, and indeed so it is. Matter is anything that has mass and occupies space. Which is to say, anything you can touch or hold. Common usage might have us believe that ‘chemicals’ are just those substances in laboratories or something that is not a natural substance. Far from it, chemists believe that everything is made of chemicals.

Although there are countless types of matter all around us, this complexity is composed of various combinations of some 100 chemical elements. The names of some of these elements will be familiar to almost everyone. Elements such as hydrogen, chlorine, silver, and copper are part of our everyday knowledge. Far fewer people have heard of selenium or rubidium or hassium.

Nevertheless, all matter is composed of various combinations of these basic elements. The wonder of chemistry is that when these basic particles are combined, they make something new and unique. Consider the element sodium. It is a soft, silvery metal. It reacts violently with water, giving off hydrogen gas and enough heat to make the hydrogen explode. Nasty ‘stuff’. Also consider chlorine, a green gas when at room temperature. It is very caustic and choking, and is nasty enough that it was used as a horrible chemical gas weapon in the last century. So what kind of horrible mess is produced when sodium and chlorine are combined? Nothing more than sodium chloride, common table salt. Table salt does not explode in water or choke us; rather, it is a common additive for foods we eat everyday.

And so it is with chemistry, understanding the basic properties of matter and learning how to predict and explain how they change when they react to form new substances is what chemistry and chemists are all about.

Chemistry is not limited to beakers and laboratories. It is all around us, and the better we know chemistry, the better we know our world.

вторник, 5 марта 2024 г.

Physical chemistry

 Many chemical disciplines, such as those already discussed, focus on certain classes of materials that share common structural and chemical features. Other specialties may be centred not on a class of substances but rather on their interactions and transformations. The oldest of these fields is physical chemistry, which seeks to measure, correlate, and explain the quantitative aspects of chemical processes. The Anglo-Irish chemist Robert Boyle, for example, discovered in the 17th century that at room temperature the volume of a fixed quantity of gas decreases proportionally as the pressure on it increases. Thus, for a gas at constant temperature, the product of its volume V and pressure P equals a constant number—i.e., PV = constant. Such a simple arithmetic relationship is valid for nearly all gases at room temperature and at pressures equal to or less than one atmosphere. Subsequent work has shown that the relationship loses its validity at higher pressures, but more complicated expressions that more accurately match experimental results can be derived. The discovery and investigation of such chemical regularities, often called laws of nature, lie within the realm of physical chemistry. For much of the 18th century the source of mathematical regularity in chemical systems was assumed to be the continuum of forces and fields that surround the atoms making up chemical elements and compounds. Developments in the 20th century, however, have shown that chemical behaviour is best interpreted by a quantum mechanical model of atomic and molecular structure. The branch of physical chemistry that is largely devoted to this subject is theoretical chemistry. Theoretical chemists make extensive use of computers to help them solve complicated mathematical equations. Other branches of physical chemistry include chemical thermodynamics, which deals with the relationship between heat and other forms of chemical energy, and chemical kinetics, which seeks to measure and understand the rates of chemical reactions. Electrochemistry investigates the interrelationship of electric current and chemical change. The passage of an electric current through a chemical solution causes changes in the constituent substances that are often reversible—i.e., under different conditions the altered substances themselves will yield an electric current. Common batteries contain chemical substances that, when placed in contact with each other by closing an electrical circuit, will deliver current at a constant voltage until the substances are consumed. At present there is much interest in devices that can use the energy in sunlight to drive chemical reactions whose products are capable of storing the energy. The discovery of such devices would make possible the widespread utilization of solar energy.

There are many other disciplines within physical chemistry that are concerned more with the general properties of substances and the interactions among substances than with the substances themselves. Photochemistry is a specialty that investigates the interaction of light with matter. Chemical reactions initiated by the absorption of light can be very different from those that occur by other means. Vitamin D, for example, is formed in the human body when the steroid ergosterol absorbs solar radiation; ergosterol does not change to vitamin D in the dark.

A rapidly developing subdiscipline of physical chemistry is surface chemistry. It examines the properties of chemical surfaces, relying heavily on instruments that can provide a chemical profile of such surfaces. Whenever a solid is exposed to a liquid or a gas, a reaction occurs initially on the surface of the solid, and its properties can change dramatically as a result. Aluminum is a case in point: it is resistant to corrosion precisely because the surface of the pure metal reacts with oxygen to form a layer of aluminum oxide, which serves to protect the interior of the metal from further oxidation. Numerous reaction catalysts perform their function by providing a reactive surface on which substances can react.

вторник, 13 февраля 2024 г.

Polymer chemistry

 The simple substance ethylene is a gas composed of molecules with the formula CH2CH2. Under certain conditions, many ethylene molecules will join together to form a long chain called polyethylene, with the formula (CH2CH2)n, where n is a variable but large number. Polyethylene is a tough, durable solid material quite different from ethylene. It is an example of a polymer, which is a large molecule made up of many smaller molecules (monomers), usually joined together in a linear fashion. Many naturally occurring substances, including cellulose, starch, cotton, wool, rubber, leather, proteins, and DNA, are polymers. Polyethylene, nylon, and acrylics are examples of synthetic polymers. The study of such materials lies within the domain of polymer chemistry, a specialty that has flourished in the 20th century. The investigation of natural polymers overlaps considerably with biochemistry, but the synthesis of new polymers, the investigation of polymerization processes, and the characterization of the structure and properties of polymeric materials all pose unique problems for polymer chemists.

Polymer chemists have designed and synthesized polymers that vary in hardness, flexibility, softening temperature, solubility in water, and biodegradability. They have produced polymeric materials that are as strong as steel yet lighter and more resistant to corrosion. Oil, natural gas, and water pipelines are now routinely constructed of plastic pipe. In recent years, automakers have increased their use of plastic components to build lighter vehicles that consume less fuel. Other industries such as those involved in the manufacture of textiles, rubber, paper, and packaging materials are built upon polymer chemistry.

Besides producing new kinds of polymeric materials, researchers are concerned with developing special catalysts that are required by the large-scale industrial synthesis of commercial polymers. Without such catalysts, the polymerization process would be very slow in certain cases.

среда, 7 февраля 2024 г.

Biochemistry

 As understanding of inanimate chemistry grew during the 19th century, attempts to interpret the physiological processes of living organisms in terms of molecular structure and reactivity gave rise to the discipline of biochemistry. Biochemists employ the techniques and theories of chemistry to probe the molecular basis of life. An organism is investigated on the premise that its physiological processes are the consequence of many thousands of chemical reactions occurring in a highly integrated manner. Biochemists have established, among other things, the principles that underlie energy transfer in cells, the chemical structure of cell membranes, the coding and transmission of hereditary information, muscular and nerve function, and biosynthetic pathways. In fact, related biomolecules have been found to fulfill similar roles in organisms as different as bacteria and human beings. The study of biomolecules, however, presents many difficulties. Such molecules are often very large and exhibit great structural complexity; moreover, the chemical reactions they undergo are usually exceedingly fast. The separation of the two strands of DNA, for instance, occurs in one-millionth of a second. Such rapid rates of reaction are possible only through the intermediary action of biomolecules called enzymes. Enzymes are proteins that owe their remarkable rate-accelerating abilities to their three-dimensional chemical structure. Not surprisingly, biochemical discoveries have had a great impact on the understanding and treatment of disease. Many ailments due to inborn errors of metabolism have been traced to specific genetic defects. Other diseases result from disruptions in normal biochemical pathways.

Frequently, symptoms can be alleviated by drugs, and the discovery, mode of action, and degradation of therapeutic agents is another of the major areas of study in biochemistry. Bacterial infections can be treated with sulfonamides, penicillins, and tetracyclines, and research into viral infections has revealed the effectiveness of acyclovir against the herpes virus. There is much current interest in the details of carcinogenesis and cancer chemotherapy. It is known, for example, that cancer can result when cancer-causing molecules, or carcinogens as they are called, react with nucleic acids and proteins and interfere with their normal modes of action. Researchers have developed tests that can identify molecules likelyto be carcinogenic. The hope, of course, is that progress in the prevention and treatment of cancer will accelerate once the biochemical basis of the disease is more fully understood.

The molecular basis of biologic processes is an essential feature of the fast-growing disciplines of molecular biology and biotechnology. Chemistry has developed methods for rapidly and accurately determining the structure of proteins and DNA. In addition, efficient laboratory methods for the synthesis of genes are being devised. Ultimately, the correction of genetic diseases by replacement of defective genes with normal ones may become possible.

понедельник, 25 декабря 2023 г.

Inorganic chemistry

 

Inorganic chemistry

Modern chemistry, which dates more or less from the acceptance of the law of conservation of mass in the late 18th century, focused initially on those substances that were not associated with living organisms. Study of such substances, which normally have little or no carbon, constitutes the discipline of inorganic chemistry. Early work sought to identify the simple substances—namely, the elements—that are the constituents of all more complex substances. Some elements, such as gold and carbon, have been known since antiquity, and many others were discovered and studied throughout the 19th and early 20th centuries. Today, more than 100 are known. The study of such simple inorganic compounds as sodium chloride (common salt) has led to some of the fundamental concepts of modern chemistry, the law of definite proportions providing one notable example. This law states that for most pure chemical substances the constituent elements are always present in fixed proportions by mass (e.g., every 100 grams of salt contains 39.3 grams of sodium and 60.7 grams of chlorine). The crystalline form of salt, known as halite, consists of intermingled sodium and chlorine atoms, one sodium atom for each one of chlorine. Such a compound, formed solely by the combination of two elements, is known as a binary compound. Binary compounds are very common in inorganic chemistry, and they exhibit little structural variety. For this reason, the number of inorganic compounds is limited in spite of the large number of elements that may react with each other. If three or more elements are combined in a substance, the structural possibilities become greater.

After a period of quiescence in the early part of the 20th century, inorganic chemistry has again become an exciting area of research. Compounds of boron and hydrogen, known as boranes, have unique structural features that forced a change in thinking about the architecture of inorganic molecules. Some inorganic substances have structural features long believed to occur only in carbon compounds, and a few inorganic polymers have even been produced. Ceramics are materials composed of inorganic elements combined with oxygen. For centuries ceramic objects have been made by strongly heating a vessel formed from a paste of powdered minerals. Although ceramics are quite hard and stable at very high temperatures, they are usually brittle. Currently, new ceramics strong enough to be used as turbine blades in jet engines are being manufactured. There is hope that ceramics will one day replace steel in components of internal-combustion engines. In 1987 a ceramic containing yttriumbariumcopper, and oxygen, with the approximate formula YBa2Cu3O7, was found to be a superconductor at a temperature of about 100 K. A superconductor offers no resistance to the passage of an electrical current, and this new type of ceramic could very well find wide use in electrical and magnetic applications. A superconducting ceramic is so simple to make that it can be prepared in a high school laboratory. Its discovery illustrates the unpredictability of chemistry, for fundamental discoveries can still be made with simple equipment and inexpensive materials.

Many of the most interesting developments in inorganic chemistry bridge the gap with other disciplines. Organometallic chemistry investigates compounds that contain inorganic elements combined with carbon-rich units. Many organometallic compounds play an important role in industrial chemistry as catalysts, which are substances that are able to accelerate the rate of a reaction even when present in only very small amounts. Some success has been achieved in the use of such catalysts for converting natural gas to related but more useful chemical substances. Chemists also have created large inorganic molecules that contain a core of metal atoms, such as platinum, surrounded by a shell of different chemical units. Some of these compounds, referred to as metal clusters, have characteristics of metals, while others react in ways similar to biologic systems. Trace amounts of metals in biologic systems are essential for processes such as respiration, nerve function, and cell metabolism. Processes of this kind form the object of study of bioinorganic chemistry. Although organic molecules were once thought to be the distinguishing chemical feature of living creatures, it is now known that inorganic chemistry plays a vital role as well.

 

среда, 20 декабря 2023 г.

 

Analytical chemistry

Most of the materials that occur on Earth, such as woodcoalminerals, or air, are mixtures of many different and distinct chemical substances. Each pure chemical substance (e.g., oxygen, iron, or water) has a characteristic set of properties that gives it its chemical identity. Iron, for example, is a common silver-white metal that melts at 1,535° C, is very malleable, and readily combines with oxygen to form the common substances hematite and magnetite. The detection of iron in a mixture of metals, or in a compound such as magnetite, is a branch of analytical chemistry called qualitative analysis. Measurement of the actual amount of a certain substance in a compound or mixture is termed quantitative analysis. Quantitative analytic measurement has determined, for instance, that iron makes up 72.3 percent, by mass, of magnetite, the mineral commonly seen as black sand along beaches and stream banks. Over the years, chemists have discovered chemical reactions that indicate the presence of such elemental substances by the production of easily visible and identifiable products. Iron can be detected by chemical means if it is present in a sample to an amount of 1 part per million or greater. Some very simple qualitative tests reveal the presence of specific chemical elements in even smaller amounts. The yellow colour imparted to a flame by sodium is visible if the sample being ignited has as little as one-billionth of a gram of sodium. Such analytic tests have allowed chemists to identify the types and amounts of impurities in various substances and to determine the properties of very pure materials. Substances used in common laboratory experiments generally have impurity levels of less than 0.1 percent. For special applications, one can purchase chemicals that have impurities totaling less than 0.001 percent. The identification of pure substances and the analysis of chemical mixtures enable all other chemical disciplines to flourish.

The importance of analytical chemistry has never been greater than it is today. The demand in modern societies for a variety of safe foods, affordable consumer goods, abundant energy, and labour-saving technologies places a great burden on the environment. All chemical manufacturing produces waste products in addition to the desired substances, and waste disposal has not always been carried out carefully. Disruption of the environment has occurred since the dawn of civilization, and pollution problems have increased with the growth of global population. The techniques of analytical chemistry are relied on heavily to maintain a benign environment. The undesirable substances in water, air, soil, and food must be identified, their point of origin fixed, and safe, economical methods for their removal or neutralization developed. Once the amount of a pollutant deemed to be hazardous has been assessed, it becomes important to detect harmful substances at concentrations well below the danger level. Analytical chemists seek to develop increasingly accurate and sensitive techniques and instruments.

Sophisticated analytic instruments, often coupled with computers, have improved the accuracy with which chemists can identify substances and have lowered detection limits. An analytic technique in general use is gas chromatography, which separates the different components of a gaseous mixture by passing the mixture through a long, narrow column of absorbent but porous material. The different gases interact differently with this absorbent material and pass through the column at different rates. As the separate gases flow out of the column, they can be passed into another analytic instrument called a mass spectrometer, which separates substances according to the mass of their constituent ions. A combined gas chromatograph–mass spectrometer can rapidly identify the individual components of a chemical mixture whose concentrations may be no greater than a few parts per billion. Similar or even greater sensitivities can be obtained under favourable conditions using techniques such as atomic absorption, polarography, and neutron activation. The rate of instrumental innovation is such that analytic instruments often become obsolete within 10 years of their introduction. Newer instruments are more accurate and faster and are employed widely in the areas of environmental and medicinal chemistry.