пятница, 15 декабря 2023 г.

Organic chemistry

 

Organic chemistry

 

Organic compounds are based on the chemistry of carbon. Carbon is unique in the variety and extent of structures that can result from the three-dimensional connections of its atoms. The process of photosynthesis converts carbon dioxide and water to oxygen and compounds known as carbohydrates. Both cellulose, the substance that gives structural rigidity to plants, and starch, the energy storage product of plants, are polymeric carbohydrates. Simple carbohydrates produced by photosynthesis form the raw material for the myriad organic compounds found in the plant and animal kingdoms. When combined with variable amounts of hydrogen, oxygen, nitrogensulfur, phosphorus, and other elements, the structural possibilities of carbon compounds become limitless, and their number far exceeds the total of all nonorganic compounds. A major focus of organic chemistry is the isolation, purification, and structural study of these naturally occurring substances.

Many natural products are simple molecules. Examples include formic acid (HCO2H) in ants, ethyl alcohol (C2H5OH) in fermenting fruit, and oxalic acid (C2H2O4) in rhubarb leaves. Other natural products, such as penicillin, vitamin B12, proteins, and nucleic acids, are exceedingly complex. The isolation of pure natural products from their host organism is made difficult by the low concentrations in which they may be present. Once they are isolated in pure form, however, modern instrumental techniques can reveal structural details for amounts weighing as little as one-millionth of a gram. The correlation of the physical and chemical properties of compounds with their structural features is the domain of physical organic chemistry. Once the properties endowed upon a substance by specific structural units termed functional groups are known, it becomes possible to design novel molecules that may exhibit desired properties.

 The preparation, under controlled laboratory conditions, of specific compounds is known as synthetic chemistry. Some products are easier to synthesize than to collect and purify from their natural sources. Tons of vitamin C, for example, are synthesized annually. Many synthetic substances have novel properties that make them especially useful. Plastics are a prime example, as are many drugs and agricultural chemicals. A continuing challenge for synthetic chemists is the structural complexity of most organic substances. To synthesize a desired substance, the atoms must be pieced together in the correct order and with the proper three-dimensional relationships. Just as a given pile of lumber and bricks can be assembled in many ways to build houses of several different designs, so too can a fixed number of atoms be connected together in various ways to give different molecules. Only one structural arrangement out of the many possibilities will be identical with a naturally occurring molecule. The antibiotic erythromycin, for example, contains 37 carbon, 67 hydrogen, and 13 oxygen atoms, along with one nitrogen atom. Even when joined together in the proper order, these 118 atoms can give rise to 262,144 different structures, only one of which has the characteristics of natural erythromycin. The great abundance of organic compounds, their fundamental role in the chemistry of life, and their structural diversity have made their study especially challenging and exciting. Organic chemistry is the largest area of specialization among the various fields of chemistry.

Комментариев нет:

Отправить комментарий